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A worldwide, multiwavelength observing campaign of the O7.5I1I(n)((f)) star { Per was
performed in 1991 with nearly continuous optical and ultraviolet coverage during several
days. The results of this campaign present strong evidence that stellar-wind variability, as
observed in the variable discrete components in UV resonance lines, originates in the same
region where Ha is formed, which is presumably close to the star.

The most noticeable variable stellar wind features are the Discrete Absorption Compo-
nents (DACs) in the resonance doublet of Si IV (see Fig. la). DACs are found in winds
of essentially all early-type stars. They appear at low (negative) velocity and accelerate
asymptotically through the profile towards high velocity. The quasi-periodic behavior of
their delvelopment is likely due to the rotation of the star, but how the stellar wind is tied
to the surface is not known. Why these DACs develop in the first place is also still un-
established, and the goal of this research was focused on finding how close to the star these
features can be traced.

In ¢ Per it was found that the DACs in Si IV (Fig. la) begin at the same time as
the enhanced-absorption phases between -200 and -500 km s~! in the subordinate N IV
P Cygni line (Fig. 1b). This low-velocity region must be located near the star, implying
that the DACs develop from a region where the radial outflow reaches 200 km s~1, which is
comparable to the rotation velocity of the star.

Simultaneous with the study period of IUE, Ha spectra were obtained from the Haute
Provence Observatory with the Aurélie spectrograph attached to the 1.5m telescope. The Ha
profiles also clearly show variability (Fig. 1c). The equivalent width varies in concert with
the DACs (Fig. 1d). Just before a new DAC in the UV starts, the Ha profile develops excess
emission in the line core, followed by enhanced absorption at negative velocities. This is the
strongest evidence ever found that DACs can be traced back to very near the photosphere.
Similar correlations between UV and Ha variability for other O stars has been found as well.
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ABSTRACT We report on our ongoing observational research on
stellar-wind variability in early-type stars. This fundamental property of
winds is most prominently observed in the blue-shifted absorption parts
of P Cygni-type profiles in the ultraviolet region. In unsaturated profiles
Discrete Absorption Components (DACs) migrate, after their sudden ap-
pearance, from intermediate velocities towards the terminal velocity, v,
of the radiatively-driven wind. In saturated profiles, variability is found
in the blue edge at velocities exceeding vo. Through simultaneous optical
observations we investigate whether the wind variability is triggered from
the stellar photosphere.

N i N

O stars lose a significant fraction of their initial mass during the evolution
through a stellar wind. About one solar mass in 10° — 10® years flows back
into the interstellar medium, reaching velocities up to 1% of the speed of light,
which makes O stars the most important mass and energy donors of the ISM.
The presence of stellar winds are primarily recognized from the P Cygni-type
profiles of ultraviolet resonance lines of C IV, Si IV and N V. A supersonically
expanding atmosphere is indicated by the blue-shifted absorption trough, formed
in regions in front of the stellar disk, and the emission peak. Also radio and in-
frared measurements of free-free radiation, emission lines (e.g. Ha, Hell 4686A)
in optical spectra, X-rays formed by accretion on a compact object In massive
X-ray binaries, and stellar-wind bubbles betray the existence of strong winds
around O-type stars.

The mass-loss rate M scales roughly with the luminosity as L!-6 and the terminal
velocity of the wind, v, is Toughly proportional to the escape velocity at the
stellar surface (Abbott, 1982). This can be rather well explained by radiation-
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velocities in the subordinate N IV line, which is most probably formed close to
the star, simultaneous with the DACs in the Si IV P Cygni profile (see Fig. 3,
Henrichs et al., 1992). The picture emerges that the different kinds of variability
we observe actually represent the same phenomenon, but that it depends on the
saturation level of the profiles which aspect is most pronounced. The question
why and where DACs start to develop is, however, unknown.

IGIN AR-WIND V¢ Y

Does the observed variability represent an intrinsic property of a radiatively-
driven wind or is this variability in the wind triggered by changes taking place
at or close to the photosphere of the star? In a series of papers, Owocki and
collaborators showed that the unstable character of the acceleration mechanism
of radiatively-driven winds can result in a highly structured stellar wind (e.g.
Owocki et al., 1988, Owocki, 1991). Time-dependent 1-D hydrodynamical cal-
culations revealed that smali perturbations grow exponentially into shocks. The
effect of scattering in the models is that the exponential growth of perturbations
in the base of the wind is dragged, resulting in a shocked wind structure only
there where the mean velocity of the wind exceeds = 0.5 vo. If DACs are inter-
preted in this model to be caused by clumped material, present in and moving
through the stratified wind, it naturally explains why DACs are mostly found at
velocities > 0.5 v,,. The highest velocities occuring in the low-density parts of
the shocks easily exceed the ve, reached by the DACs. This could be the cause
for the *extra” broadening of the saturated P Cygni absorption troughs. A big
problem, which is not (yet?) solved by these models, is the slow acceleration of
DAGs. As can be seen in Fig. 1, the acceleration of a DAC can take more than 5
days, which is much slower than the predicted acceleration of the clumped wind
regions, which is about one day. The observed low velocity N IV variability (Fig.
3) suggests that DACs originate from regions close to the stellar photosphere,
and one should be able to find other variable spectral lines formed in these re-
gions. Therefore, we organized multiwavelength observing campaigns to study
the variability in optical lines like Ha and Hell 4686A and UV P Cygni profiles
simultaneously. We found that most of our target stars showed variability both
in near-photospheric and in wind regions. Figure 4a shows changes in the Ha
profile of @ Cam (09.51a) during two nights of observation. We did not, however,
find any variability in the ¥V P Cyvgni profiles for this star, probably because
these profiles were too saturated. A positive example of simultaneous changes
observed in line profiles formed in different regions of the wind was found in
A Cep (06.5I(n)fp). In Fig. 1b we present the changes in the steep blue edge
of the C IV P Cygni profile. In simultaneous observations of the Hell 46864
line, collected at Kitt Peak (U.S.A.) and Calar Alto (Spain), we detected strong
variability (Henrichs, 1991). We computed the equivalent width of both the C IV
absorption and the Hell 4686A line and plotted these quantities as a function
of time (Fig. 4b). Striking is the fact that both lines show the same variation
in their equivalent width, especially when one realizes that the Hell 46864 line
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( Figure 1: a) DAC behaviour in the Si IV resonance doublet of 19 Cep O6.5Ib.

An arrow indicates the mid-exposure time of each spectrum; the intensity is
converted into a gray-scale; b) Variability in the steep blue edge of the C IV
profile of A Cep O6I(n)fp.

> driven wind theory, initiated by Lucy & Solomon (1970) and further developed by
Castor, Abbott & Klein(CAK) (1975). By scattering photons from the radiation
field into millions of lines, and thus absorbing momentum, the upper layers of
the atmosphere are accelerated towards velocities exceeding 100 Mach. Recent
refinements of the CAK theory by Friend & Abbott (1986) and Pauldrach, Puls
& Kudritzki (1986) resulted in a self-consistent theory describing radiatively-
driven winds. Nowadays, a comparison between calculated and observed wind
profiles can reveal fundamental parameters like mass, radius and luminosity of
the star (see e.g. Kudritzki & Hummer, 1990). Because of the fact that properties
like luminosity and gravity, which are constant in time, determine the dynamics
of a stellar wind, we do not, at first, expect variability.

\'% IV P CYGNIP

As shown in Fig. 1, the Si IV resonance doublet near 1400 A of 19 Cep, an 09.5Ib
supergiant, exhibits variability in the wind on a daily timescale. From such time-
dependent studies it became clear that these variations are not chaotic, but occur
in a well-defined pattern (e.g. Prinja et al., 1987, Henrichs et al., 1988): broad



::,... B H_llll!lll!(‘lrrlllTilj-‘
| | :
”‘\ | I
iE/M J\‘/‘ L 54“‘
AP "
I \A"/f\z\/ ?;3. .
S| i »
v k ¢
r r o
!!-"SX Ma . - . g
oy : 5
£
B v f
A s @
R P
\/ A
L - .
1 : 4 !|....|.,,.11...1‘...1
_— - . . .00 ) 1508 Lo

1 008
e TR EE e YORARAL (W1 KW

( Figure 2: a) Si IV P Cygni profile of 19 Cep 09.5Ib (#22 in Fig. 1) plotted
on top of the template spectrum. The quotient spectrum (bottom) shows the
isolated DAC and a gaussian fit (plus symbols); b) Column density of a DAC as
a function of central velocity (i.e. time) for 19 Cep 09.51b.

> absorption enhancements appear episodically at low, but supersonic, velocity and

accelerate through the profile until a final velocity (i.e. 0.8-0.9 vedge, the velocity
corresponding to the bottom of the steep blue edge of saturated P Cygni lines)
is reached. During the acceleration phase, which takes place on the order of
days (depending on the star), the width of the absorptions decreases. Because
of their characteristic appearance these features are called “discrete absorption
components” (DACs). DACs have been found in UV spectra of more than 80%
of 203 O-type stars (Howarth & Prinja, 1989).
To study the detailed DAC behaviour, we divided each profile by a constructed
template spectrum, which is aimed to contain a minimum amount of absorption.
This can be done because the profile often returns to the same minimum after
a DAC passage. In Fig. 2a a Si IV profile of the 09.5Ib star 19 Cep is shown
together with the template spectrum and the quotient spectrum. To model the
DACs, we fit the quotient spectra, taking into account both doublet components
simultaneously, including the known oscillator strength ratio and doublet sep-
aration. By modeling the DACs in this way, we could study the evolution of
central velocity, width and the derived column density of the DACs. We find
for all stars that the column density reaches a maximum at a central velocity
of about 1500 km/s (Fig. 2b). A simple way of modeling this change in column
density is in terms of spherical expansion of an opaque blob moving through the
wind and becoming optically thin before the stellar disk is totally covered. In
such a model the expansion radius can be mapped against time, giving an aver-
age velocity law for a DAC. This poses constraints on a physical model. Other
sophistications, like rotation and density inhomogeneities could be build in, but
are probably too ad hoc in the present stage of analysis.
It has been suggested that the final velocity reached by a DAC (0.8-0.9 vedge)
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Figure 3: a)) DACs in the Si IV resonance doublet of £ Per 07.51II(n)((f)); b)
fmult3nedus changes, but at much smaller velocities, in the subordinate N IV
line at 1718A.

in fact represents the “true” terminal velocity, i.e. Ve, of the wind (Henrichs
et al., 1988). The extra broadening beyond the steep blue edge of saturated
P Cygni profiles can be caused by “turbulence” in the wind (Groenewegen &
Lamers, 1989). Furthermore, the recurrence timescale of DACs scales, for the
few stars observed, roughly proportional to vro sinz (Prinja, 1988, and Henrichs
et al., 1988). For example, the left panels of Figs. 1 and 3 show that the DAC
event in 19 Cep is much “slower” than in £ Per, corresponding to vrocsint = 40
km/s and 200 km/s, respectively. A long-term study of stellar-wind variability
(Kaper et al., 1990) revealed that the detailed DAC “pattern” differs from star
to star, but each star shows the same characteristics (and thus timescales) every
year it is observed. This suggests that rotation must play an important role.

DACs in unsaturated P Cygni profiles are the most pronounced indicators of
stellar-wind variability. But also saturated P Cygni profiles (like C IV of A Cep
in Fig. 1) exhibit large variations. We found up to 15% changes in veqge Of
these profiles, which in the interpretation above means a variable turbulence in
the wind. We did not find an obvious correlation, valid for all stars and for
all datasets, between DAC behaviour in unsaturated lines and changes in vedge
in saturated lines. For the star £ Per we also found changes at much smaller
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Figure 4: a) The correspondence between changes in equivalent width of the Hell
line (filled symbols) and the C IV P Cygni absorption (open symbols) of
A Cep (06.51(n)fp); b) Two nights of observations at O.H.P. (France) of the Ha
profile of « Cam (09.5Ia). Note the dramatic changes in emission strength.

must be formed very close to the star, where apparently the highest velocities
(> 2300 km/s) in the wind are also present. Further interpretation of our re-
cent observing campaigns held in February and October 1991 is still underway.
With these observations we shouid be able to detect a connection between near-
photospheric and wind variability, if such a connection exists at all.
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